Online Multiple Object Tracking Based on Open-Set Few-Shot Learning
نویسندگان
چکیده
منابع مشابه
Few-shot Object Detection
In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named “few-shot object detection”. The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, e...
متن کاملFew-shot Learning
Though deep neural networks have shown great success in the large data domain, they generally perform poorly on few-shot learning tasks, where a classifier has to quickly generalize after seeing very few examples from each class. The general belief is that gradient-based optimization in high capacity classifiers requires many iterative steps over many examples to perform well. Here, we propose ...
متن کاملMultiple-Cue-Based Visual Object Contour Tracking with Incremental Learning
This paper proposes a visual object contour tracking algorithm using a multi-cue fusion particle filter. A novel contour evolution energy is proposed which integrates an incrementally learnt model of object appearance with a parametric snake model. This energy function is combined with a mixed cascade particle filter tracking algorithm which fuses multiple observation models for object contour ...
متن کاملPatch Based Multiple Instance Learning Algorithm for Object Tracking
To deal with the problems of illumination changes or pose variations and serious partial occlusion, patch based multiple instance learning (P-MIL) algorithm is proposed. The algorithm divides an object into many blocks. Then, the online MIL algorithm is applied on each block for obtaining strong classifier. The algorithm takes account of both the average classification score and classification ...
متن کاملOnline Object Representation Learning and Its Application to Object Tracking
Tracking by detection is the topic of recent research that has received considerable attention in computer vision community. Mainly off-line classification methods have been used, however, they perform weakly in the case of appearance changes. Training the classifier incrementally and in an online manner solves this problem, but nevertheless, raises drifting due to soft or hard labeling in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3032252